130 research outputs found

    Fully-integrated solid shunt planar transformer for LLC resonant converters

    Get PDF
    A new topology for achieving high leakage inductance in inserted-shunt integrated magnetic planar transformers is proposed. In the proposed topology, two one-segment shunts are placed across the planar E-core air gap and between the primary and secondary windings. The proposed topology benefits using solid inexpensive ferrite shunts, making manufacturing easier. A detailed mathematical model is derived from which a design methodology is developed, providing accurate estimation for the leakage and magnetising inductances. The theoretical analysis has been verified using finite-element analysis and experimental implementation. AC resistance analysis and efficiency comparison are also presented for the proposed topology and a recent topology with inserted-segmental-shunt, which shows the proposed topology provides higher efficiency because of lower AC resistance. In addition, an isolated LLC resonant converter is designed and built to investigate the performance of the proposed topology in practice. The three magnetic components needed for the designed LLC resonant converter is integrated in a single planar transformer using the proposed topology and the converter operates properly

    Neuroblastoma in iran: An experience of 32 years at a referral childrens hospital

    Get PDF
    Background: This survey aim was to evaluate the epidemiology and outcomes of neuroblastoma patients in one the most important children referral hospitals in Iran as a model from developing countries. Materials and Methods: This retrospective, non-randomized analytic study was conducted on 219 newly diagnosed neuroblastoma cases. Results: The age of patients ranged from 1-156 months with the average of 40.5±2.44, with a male/female ratio of 1.9/1. Of the total, 172 (78.5) were children and 47 (21.5) were infants The adrenals were the most common primary site (60). Stage 4 at diagnosis accounted for about 54 of all enrolled patients. Infants had significantly better cumulative survival (85±8) than children (33±7) during the follow up period and the survival rate improved from 33±7 in 1974-1994 to 58±9 in 1995-2005. Conclusions: This study indicates that our patient population with neuroblastomas tends to have more advanced disease, perhaps with poor biologic markers, but our analysis shows that the outcomes have improved over 32 years although the overall survival of Iranian neuroblastoma patients is still lower than developed countries. Late diagnosis, inability to determine risk group during the years of study andusing single protocol for all enrolled patients can be the reasons of lower survival rate

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    © 2020 Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings: Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation: The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC. Funding: Bill & Melinda Gates Foundation

    The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill & Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (>= 65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2.5th and 97.5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings: Globally, performance on the UHC effective coverage index improved from 45.8 (95% uncertainty interval 44.2-47.5) in 1990 to 60.3 (58.7-61.9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2.6% [1.9-3.3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0.79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388.9 million (358.6-421.3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3.1 billion (3.0-3.2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968.1 million [903.5-1040.3]) residing in south Asia. Interpretation: The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background: Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. // Methods: For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dose-specific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in country-reported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. // Findings: By 2019, global coverage of third-dose DTP (DTP3; 81·6% [95% uncertainty interval 80·4–82·7]) more than doubled from levels estimated in 1980 (39·9% [37·5–42·1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38·5% [35·4–41·3] in 1980 to 83·6% [82·3–84·8] in 2019). Third-dose polio vaccine (Pol3) coverage also increased, from 42·6% (41·4–44·1) in 1980 to 79·8% (78·4–81·1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56·8 million (52·6–60·9) to 14·5 million (13·4–15·9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. // Interpretation: After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines

    Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Summary: Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study

    Get PDF
    BACKGROUND: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future
    corecore